Protein Diffusion Technical Validation¤
A minimal validation script to verify your environment is correctly set up for protein diffusion modeling with JAX and Flax NNX.
Files¤
- Python Script:
protein_diffusion_tech_validation.py - Jupyter Notebook:
protein_diffusion_tech_validation.ipynb
Quick Start¤
# Clone and setup
cd workshop
source activate.sh
# Run validation
python examples/generative_models/protein/protein_diffusion_tech_validation.py
# Expected output:
# JAX version: 0.7.2
# Biopython available: False
# Protein coordinates shape: (100, 3)
# Model output shape: (100, 3)
# Loss: 1.467...
# Technology validation successful!
Overview¤
This script performs a quick technology stack validation for protein modeling. It's designed to be the first thing you run to ensure your environment is correctly configured.
Learning Objectives¤
- Validate JAX and Flax NNX installation
- Understand protein point cloud representation
- Implement a minimal protein structure model
- Test forward pass and loss computation
- Handle optional dependencies gracefully
Prerequisites¤
- JAX installed
- Flax NNX installed
- Basic understanding of protein structure (helpful)
- Familiarity with point clouds (helpful)
What Gets Validated¤
This script checks 5 critical components:
1. JAX Functionality¤
Tests:
- Random number generation (
jax.random.key) - Array operations (
jax.numpy) - Device placement (CPU/GPU)
Expected: JAX 0.7.2+ working correctly
2. Flax NNX¤
Tests:
- Module creation (
nnx.Module) - Linear layers (
nnx.Linear) - Activation functions (
nnx.relu) - Parameter initialization
Expected: Flax NNX modules instantiate and run
3. Protein Representation¤
Tests:
- Point cloud format (N × 3 arrays)
- C-alpha atom extraction (if BioPython available)
- Synthetic data generation (fallback)
Expected: Proteins represented as 3D point clouds
4. Forward Pass¤
Tests:
- Model inference
- Shape preservation
- Numerical stability
Expected: Output shape matches input shape
5. Loss Computation¤
Tests:
- MSE calculation
- Gradient flow (implicit)
- JAX autodiff compatibility
Expected: Loss value computed successfully
Code Walkthrough¤
Step 1: Import and Check Dependencies¤
import jax
import jax.numpy as jnp
from flax import nnx
try:
from Bio.PDB import PDBParser
HAS_BIOPYTHON = True
except ImportError:
HAS_BIOPYTHON = False
print("Biopython not installed. Will use synthetic data.")
The script gracefully handles missing BioPython by falling back to synthetic data.
Step 2: Define Simple Protein Model¤
class SimpleProteinPointCloud(nnx.Module):
features: int = 32
hidden_dim: int = 64
output_dim: int = 3 # 3D coordinates
def __init__(self, rngs: nnx.Rngs):
super().__init__()
self.encoder = nnx.Linear(in_features=3, out_features=self.features, rngs=rngs)
self.hidden = nnx.Linear(in_features=self.features, out_features=self.hidden_dim, rngs=rngs)
self.decoder = nnx.Linear(in_features=self.hidden_dim, out_features=self.output_dim, rngs=rngs)
def __call__(self, points):
x = self.encoder(points)
x = nnx.relu(x)
x = self.hidden(x)
x = nnx.relu(x)
x = self.decoder(x)
return x
Architecture:
- Input: (N, 3) point cloud
- Encoder: 3 → 32 dimensions
- Hidden: 32 → 64 dimensions
- Decoder: 64 → 3 dimensions
- Output: (N, 3) transformed point cloud
Step 3: Generate or Load Protein Data¤
def create_synthetic_protein_data(n_points=100):
"""Create synthetic protein point cloud data."""
key = jax.random.key(42)
points = jax.random.normal(key, (n_points, 3))
return points
Synthetic data is a simple Gaussian distribution in 3D space, simulating protein atom positions.
Real data (with BioPython):
def load_protein_from_pdb(pdb_file):
"""Load protein coordinates from a PDB file."""
parser = PDBParser()
structure = parser.get_structure("protein", pdb_file)
# Extract C-alpha atoms
coords = []
for model in structure:
for chain in model:
for residue in chain:
if "CA" in residue:
ca_atom = residue["CA"]
coords.append(ca_atom.get_coord())
return jnp.array(coords)
C-alpha (CA) atoms form the protein backbone and provide a coarse-grained representation.
Step 4: Run Validation¤
# Create model
rngs = nnx.Rngs(params=jax.random.key(0))
model = SimpleProteinPointCloud(rngs=rngs)
# Generate data
protein_coords = create_synthetic_protein_data(n_points=100)
# Forward pass
output = model(protein_coords)
# Compute loss
loss = jnp.mean((output - protein_coords) ** 2)
Validation checklist:
✅ Model instantiates without errors
✅ Forward pass completes
✅ Output shape is (100, 3)
✅ Loss is a valid number
Expected Output¤
Biopython not installed. Will use synthetic data.
JAX version: 0.7.2
Biopython available: False
Protein coordinates shape: (100, 3)
Model output shape: (100, 3)
Loss: 1.4674725532531738
Technology validation successful!
What each line means:
| Output | Meaning |
|---|---|
JAX version: 0.7.2 |
JAX is installed and version is ≥ 0.7 |
Biopython available: False |
Optional dependency status |
Protein coordinates shape: (100, 3) |
100 atoms in 3D space |
Model output shape: (100, 3) |
Forward pass preserves shape |
Loss: 1.467... |
MSE between input and output |
Technology validation successful! |
All checks passed ✓ |
Understanding Protein Point Clouds¤
What are C-alpha (CA) Atoms?¤
Proteins are chains of amino acids. Each amino acid has:
- N: Nitrogen (backbone)
- C-alpha (CA): Central carbon (backbone)
- C: Carbonyl carbon (backbone)
- O: Oxygen (backbone)
- Sidechain: Variable atoms (different for each amino acid)
C-alpha atoms trace the protein backbone and are commonly used for:
- Structural alignment
- Coarse-grained modeling
- Fast structure prediction
- Low-resolution analysis
Point Cloud Representation¤
Point cloud format:
coordinates.shape # (N, 3) where N = number of residues
coordinates[0] # [x, y, z] for first CA atom
Troubleshooting¤
"No module named 'jax'"¤
Cause: JAX not installed
Solution:
"No module named 'flax'"¤
Cause: Flax not installed
Solution:
"Biopython not installed" warning¤
Cause: BioPython is optional and not installed
Impact: None - synthetic data works fine for validation
To install (optional):
Loss value is NaN or Inf¤
Possible causes:
- Model initialization issue: Check RNG keys are valid
- Numerical instability: Add layer normalization
- Data issue: Verify protein_coords contains valid floats
Debug:
print("Coords min/max:", protein_coords.min(), protein_coords.max())
print("Output min/max:", output.min(), output.max())
Different loss value than documentation¤
This is normal! The exact loss depends on:
- Random initialization (from RNG seed)
- JAX version
- Hardware (CPU vs GPU)
- Floating point precision
As long as the loss is a reasonable number (not NaN/Inf), validation passed.
Next Steps¤
-
Protein Point Cloud
Full protein structure modeling with constraints
-
Protein Extensions
Domain-specific extensions for proteins
-
Protein with Modality
Using the modality architecture for proteins
-
Protein-Ligand Benchmark
Advanced: SE(3) equivariant protein modeling
Additional Resources¤
- JAX Documentation - JAX fundamentals
- Flax NNX Guide - NNX module system
- BioPython Tutorial - PDB file parsing
- Protein Data Bank (PDB) - Download protein structures
- AlphaFold - Protein structure prediction