Skip to content

Precision Recall¤

Module: benchmarks.metrics.precision_recall

Source: benchmarks/metrics/precision_recall.py

Overview¤

Precision-recall metrics for evaluating generative models.

This module implements precision and recall metrics for generative models as described in "Improved Precision and Recall Metric for Assessing Generative Models" (Kynkäänniemi et al., 2019).

The implementation uses clustering to identify modes in the data distribution and computes precision and recall based on cluster coverage.

Classes¤

KMeansModule¤

class KMeansModule

PrecisionRecallBenchmark¤

class PrecisionRecallBenchmark

Functions¤

init¤

def __init__()

init¤

def __init__()

compute_cluster_based_metrics¤

def compute_cluster_based_metrics()

compute_distance_based_metrics¤

def compute_distance_based_metrics()

compute_precision_recall¤

def compute_precision_recall()

fit¤

def fit()

is_well_separated_clusters¤

def is_well_separated_clusters()

run¤

def run()

Module Statistics¤

  • Classes: 2
  • Functions: 8
  • Imports: 5